Volume 17, Issue 3 p. 347-357
Radiation Oncology Physics
Open Access

Deformable image registration and interobserver variation in contour propagation for radiation therapy planning

Adam C. Riegel

Corresponding Author

Adam C. Riegel

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Hofstra Northwell School of Medicine, Hempstead, NY, USA

aCorresponding author: Adam C. Riegel, Department of Radiation Medicine, Center for Advanced Medicine, 450 Lakeville Rd., Lake Success, NY 11042, USA; phone: (516) 321 3038; fax: (516) 470 8445; email: [email protected]

Search for more papers by this author
Jeffrey G. Antone

Jeffrey G. Antone

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Search for more papers by this author
Honglai Zhang

Honglai Zhang

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Hofstra Northwell School of Medicine, Hempstead, NY, USA

Search for more papers by this author
Prachi Jain

Prachi Jain

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Search for more papers by this author
Jagdeep Raince

Jagdeep Raince

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Search for more papers by this author
Anthony Rea

Anthony Rea

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Search for more papers by this author
Angelo M. Bergamo

Angelo M. Bergamo

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Search for more papers by this author
Ajay Kapur

Ajay Kapur

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Hofstra Northwell School of Medicine, Hempstead, NY, USA

Search for more papers by this author
Louis Potters

Louis Potters

Department of Radiation Medicine, Northwell Health, Lake Success, NY, USA

Hofstra Northwell School of Medicine, Hempstead, NY, USA

Search for more papers by this author
First published: 08 May 2016
Citations: 15

Abstract

Deformable image registration (DIR) and interobserver variation inevitably introduce uncertainty into the treatment planning process. The purpose of the current work was to measure deformable image registration (DIR) errors and interobserver variability for regions of interest (ROIs) in the head and neck and pelvic regions. Measured uncertainties were combined to examine planning margin adequacy for contours propagated for adaptive therapy and to assess the trade-off of DIR and interobserver uncertainty in atlas-based automatic segmentation. Two experienced dosimetrists retrospectively contoured brainstem, spinal cord, anterior oral cavity, larynx, right and left parotids, optic nerves, and eyes on the planning CT (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0001) and attenuation-correction CT of diagnostic PET/CT (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0002) for 30 patients who received radiation therapy for head and neck cancer. Two senior radiation oncology residents retrospectively contoured prostate, bladder, and rectum on the postseed-implant CT (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0003) and planning CT (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0004) for 20 patients who received radiation therapy for prostate cancer. Interobserver variation was measured by calculating mean Hausdorff distances between the two observers' contours. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0005 was deformably registered to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0006 via commercially available multipass B-spline DIR. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0007 contours were propagated and compared with urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0008 contours via mean Hausdorff distances. These values were summed in quadrature with interobserver variation for margin analysis and compared with interobserver variation for statistical significance using two-tailed t-tests for independent samples (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0009). Combined uncertainty ranged from 1.5-5.8 mm for head and neck structures and 3.1-3.7 mm for pelvic structures. Conventional 5 mm margins may not be adequate to cover this additional uncertainty. DIR uncertainty was significantly less than interobserver variation for four head and neck and one pelvic ROI. DIR uncertainty was not significantly different than interobserver variation for four head and neck and one pelvic ROI. DIR uncertainty was significantly greater than interobserver variation for two head and neck and one pelvic ROI. The introduction of DIR errors may offset any reduction in interobserver variation by using atlas-based automatic segmentation.

PACS number(s): 87.57.nj, 87.55.D-

I. INTRODUCTION

Deformable image registration (DIR) is increasingly being incorporated into radiation therapy. Applications include multimodality image registration,1 atlas-based automatic segmentation,2 dose summation,3 and contour propagation for online,4, 5 and offline4, 6 adaptive radiation therapy. Unlike conventional “rigid” registration, DIR does not assume spatial invariance between all voxels of both image sets. By using complex mathematical models, such as optical flow7, 8 or B-splines,2, 9 DIR stretches one image set to match another at a local (often voxel-by-voxel) level. This is useful in anatomical regions that have many degrees of freedom, such as the neck, or that are prone to change over time. Such changes could occur in daily cycles (e.g., the bladder or rectum) or progressively over the course of treatment (e.g., soft tissue in the head and neck that change with weight loss).

In radiation therapy planning, DIR is often applied to two CT image sets. The first CT is usually the CT “simulation” acquired in the treatment position. The second CT could be a diagnostic or prior simulation CT. Deformable image registration between CTs can sometimes be useful in itself (diagnostic CT with intravenous contrast, for example), but when the second CT is DICOM-linked to secondary data, such as the PET portion of a PET/CT or a prior treatment plan, data can be transformed with the deformation vector field just like the CT to which they are linked. This process enables contour propagation from one CT to another. Clinically, physician-drawn contours are often propagated from simulation CT to cone-beam CT or resimulation CT to adapt treatment6 or from a multipatient CT “atlas” for automatic segmentation.2 For atlas-based automatic segmentation, CTs and their associated clinical contours are added to the CT atlas. When a new patient is to be segmented automatically, the algorithm searches the atlas for a CT which best matches the clinical CT, DIR is performed, and atlas contours are propagated to the new CT.

Studies have assessed the accuracy of DIR algorithms using digital phantoms,10 physically deforming phantoms,11 mathematical descriptors,12, 13 and clinical CT scans.14-16 Digital10 or physically deforming phantom studies,11 while useful, may lack clinical complexity. Mathematical descriptors, such as curl and the Jacobian, have been proposed as useful metrics to quantify the deformation vector field.12, 13 Though such descriptors could be beneficial in the future, they are untested clinically and lack intuitive clinical meaning. Landmark-based quality assurance from clinical CT currently represents the most robust quantification of DIR accuracy. Castillo et al.14 demonstrate the efficacy of landmark pairs to assess DIR quality in thoracic CT imaging and suggest the technique could be used for routine DIR quality assurance. In a large multi-institutional study, Brock et al.16 measure DIR error for intra- and intermodality DIR using landmarks and found DIR errors on the order of voxel size.

Though much attention has been justifiably focused on DIR accuracy, the influence of interobserver variation on DIR uncertainty in regard to landmark identification is nonnegligible.17 The same may be true for contour propagation in adaptive therapy or atlas-based automatic segmentation. For adaptive therapy, where contour propagation is used to reduce the contouring burden on the physician and dosimetrist, propagated volumes would presumably include uncertainties associated with both DIR and interobserver contouring variability. Currently, neither is commonly included in planning target volume (PTV) or planning organ-at-risk volume (PRV) margins. For atlas-based automatic segmentation where the use of DIR has been reported to reduce interoberver contouring variation,18 the trade-off between this benefit and the uncertainty introduced by DIR error has not been quantified.

The purpose of the current work was to evaluate the influence of interobserver variation in contours propagated by deformable image registration. Two analyses were performed. First, the uncertainties associated with interobserver variation and DIR were measured for normal tissue contours in a sample of patients in two anatomical sites and a potential margin expansion was evaluated; second, the magnitude of DIR uncertainty was compared with interobserver variation.

II. MATERIALS AND METHODS

Thirty (30) head and neck and 20 prostate cancer patients who received radiation therapy at our institution were retrospectively included in the study. Site-specific methodology is described in the next sections.

A. Head and neck

Head-and-neck patients were retrospectively included if CT simulation was accompanied by diagnostic PET/CT used for treatment planning. Per our standard clinical CT simulation protocol, patients were immobilized using five-point thermoplastic masks (Orfit Industries, Wijnegem, Belgium) and scanned with the Philips Brilliance Big Bore CT scanner (Philips Medical Systems, Milpitas, CA). Simulation CT scans employed helical acquisition, 120 kVp, 3 mm slice thickness, and 65–70 cm reconstructed field of view. Images were reconstructed using filtered back-projection. PET/CT scanning was performed within the institution for 18 of 30 patients with 120 kVp, 3.75 mm slice thickness, and 50 cm reconstructed field of view. The remaining scans were acquired from outside institutions with tube voltages between 120–140 kVp, slice thicknesses ranging from 3–5 mm, and reconstructed fields of view ranging from 244 cm to 700 cm. All CT scans utilized automatically modulated tube current and 512 by 512 image matrices. No immobilization was used for any diagnostic PET/CT scan and a curved tabletop was utilized for all patients.

Two dosimetrists with substantial head and neck planning experience were asked to independently contour brainstem, spinal cord, anterior oral cavity, larynx, right and left parotids, right and left optic nerves, and right and left eyes on the simulation CT scan (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0010). Anterior oral cavity was defined as the region splitting the base of tongue between the hard palate and glossopharyngeal sulcus. Larynx was defined as the superior edge of the epiglottis to inferior edge of the cricoid cartilage. Spinal cord was defined from the inferior edge of the brainstem to the superior edge of sternum.

After one month (to reduce memory bias), both dosimetrists contoured the same regions of interest (ROI) on the CT portion of the diagnostic PET/CT scan (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0011). One iteration of mutual information-based rigid registration and multipass B-spline DIR was used to register urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0012 to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0013. Contouring and DIR was performed in Velocity software version 3.0.0 (Varian Medical Systems, Atlanta, GA). The CT portion of the PET/CT scan was used in this study because PET/CT-to-CT-simulation represents the majority of DIR in our department and presents a challenging anatomical match due to lack of immobilization on the PET/CT.

B. Prostate

Prostate patients were retrospectively included if CT simulation for external beam and postimplant CT for prostate seed implant was performed. Simulation CT was acquired via helical acquisition with 140 kVp, 3 mm slice thickness, and 60 cm field of view. Postimplant CT was performed three to four weeks after implantation and was acquired via helical acquisition, 120 kVp, 3 mm slice thickness, and 20 cm field of view. All CT scans utilized automatically modulated tube current, filtered back-projection reconstruction, 512 by 512 image matrices, and flat table tops.

Two senior radiation oncology residents were asked to independently contour prostate, rectum, and bladder on the postimplant CT scan (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0014). Rectum was defined as 1 cm above and below the prostate.

One month later (to reduce memory bias), the residents contoured the same ROIs on the external beam simulation CT (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0015). The same deformable technique described above was used to register urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0016 to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0017. If excessive bladder/rectum filling caused visibly misregistered contours after one iteration of DIR, an additional iteration was performed by reducing the DIR region to focus on the bladder and/or rectum. Postimplant CT was used in this study because registration of postimplant CT to external beam CT simulation may facilitate composite external beam and brachytherapy dose summation.19

C. Analysis

Regions of interest were generically termed urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0018 where the first subscript signifies the dosimetrist (1 or 2) and the second subscript signifies the image set (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0019 or urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0020). urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0021 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0022 were transformed via the DIR vector field to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0023, resulting in urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0024 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0025. The variation between the observers' contours on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0026 (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0027 vs. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0028) was the interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0029). The variation between the original urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0030 contours and the deformed urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0031 contours (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0032 vs. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0033 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0034 vs. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0035) was termed the total measured variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0036).

If DIR worked perfectly and the observers were able to replicate the ROIs exactly on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0037 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0038, the variation between urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0039 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0040 should be zero. In practice, urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0041 contained two components: Error associated with the DIR technique (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0042) and intraobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0043) because each ROI was drawn once on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0044 and again on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0045. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0046 could not be explicitly measured for all patients due to time limitations of the participants. Instead, all observers recontoured the same ROIs on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0047 for five patients approximately one month after urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0048 contour completion. These ROIs were termed urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0049 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0050 and were compared to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0051 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0052, respectively, to determine murn:x-wiley:1526-9914:media:acm20347:acm20347-math-0053. Table 1 summarizes the quantities and their definitions, and Fig. 1 schematically represents the relationships between them.

Table 1. Contour names, measured quantities, and definitions.
Quantity Definition
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0054 Structures contoured by observer i on image set j
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0055 Structures contoured by observer i deformed from urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0056 to urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0057
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0058 Structures recontoured by observer i on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0059
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0060 Interobserver variation: deviation between observer 1 and observer 2 contours on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0061
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0062 Intraobserver variation: deviation between observer i original contours and observer i recontours on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0063
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0064 Total variation: deviation between observer i contours and deformed observer i contours on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0065; contains both intraobserver variation and residual deformable registration errors
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0066 Residual deformable registration error: intraobserver variation subtracted in quadrature from total variation
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0067 Residual deformable registration error after second iteration of deformable registration
Details are in the caption following the image

Schematic representation of the relationships between regions of interest (ROIs). ROIs on the left and right are contoured on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0068 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0069, respectively. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0070 represents structures contoured by observer i on image set j. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0071 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0072 are deformed via the DIR vector field to form urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0073 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0074. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0075 is the total variation between the original urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0076 contours (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0077 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0078) and deformed urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0079 contours (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0080 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0081). urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0082 is the interobserver variation measured between contours drawn on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0083 by both observers. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0084 is the intraobserver variation measured between contours drawn on urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0085 for each observer.

An adaptation of the three-dimensional Hausdorff distance, the mean variation between two surfaces, described by Varadhan et al.,20 was used to quantify urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0086, and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0087 for each ROI. The Hausdorff calculation was performed for each point in the primary ROI against all points in the secondary ROI to determine the closest distance between the two surfaces in three dimensions. The mean distance over all points was calculated to represent the average variation between the two surfaces. The calculation was performed with a built-in function in the Velocity software.

Interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0088) was calculated and averaged over all patients for each ROI. Total variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0089) was calculated and averaged over all patients for each ROI for each observer. The sample size of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0090 was thus twice the sample size of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0091 as two observers are required to calculate urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0092. Intraobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0093) was averaged over the five randomly chosen patients described above for each ROI in each anatomical site. Because we measured urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0094 for a sample of patients and not each patient individually, a linear sum of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0095 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0096 uncertainties could not be assumed. Instead, we assumed urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0097 would be less than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0098,21, 22 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0099 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0100 behaved like population-based margins and were summed in quadrature,23 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0101 could be calculated using the following equation:
urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0102(1)

To estimate the margin expansion required to account for both interobserver variation and DIR, we summed the average urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0103 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0104 in quadrature for each region of interest. We used Student's t-tests for independent samples (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0105) to compare means of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0106 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0107 distributions for statistical significance for each ROI.

III. RESULTS

A. Head and neck

All 10 ROIs were contoured for 27 of 30 patients. The larynx and left parotid were not contoured due to surgical removal before radiation therapy for one patient each. The left parotid was not contoured due to proximity to the primary tumor for one patient. Table 2 displays means and standard deviations of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0108 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0109, urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0110, and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0111 for 10 ROIs. Intraobserver variation was less than interobserver variation for all structures. Table 3 shows the quadrature sum of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0112 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0113 for potential margin expansion for each ROI. There was notable variation in the combined uncertainty for the head and neck ROIs, ranging from 1.5 mm for the eyes to 5.8 mm for the anterior oral cavity.

Figure 2 compares interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0114) and residual DIR errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0115). Error bars represent 1 SD. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0116 was significantly less than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0117 for the anterior oral cavity, spinal cord, larynx, and left parotid. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0118 was not significantly different than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0119 for the brainstem, right parotid, left and right optic nerves. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0120 was significantly greater than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0121 for the left and right eyes, but the difference was less than 0.5 mm. Left parotid contours for one patient are shown in Fig. 3(a) (axial) and 3(b) (coronal) for comparison.

Table 2. Total variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0122), intraobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0123), residual deformation errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0124), and interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0125) for head and neck anatomy.
Total Variation Intraobserver Variation Residual Deformable Registration Errors Interobserver Variation
Structure N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0126 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0127 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0128 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0129
Anterior Oral Cavity 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0130 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0131 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0132 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0133
Brainstem 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0134 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0135 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0136 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0137
Cord 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0138 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0139 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0140 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0141
Left Eye 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0142 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0143 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0144 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0145
Right Eye 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0146 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0147 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0148 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0149
Larynx 58 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0150 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0151 58 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0152 29 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0153
Left Optic Nerve 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0154 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0155 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0156 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0157
Right Optic Nerve 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0158 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0159 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0160 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0161
Left Parotid 56 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0162 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0163 56 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0164 28 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0165
Right Parotid 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0166 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0167 60 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0168 30 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0169
  • N = represents the number of contours analyzed.
Table 3. Quadrature sum of residual deformation errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0170) and interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0171) for all regions of interest.
Structure Potential Expansion (mm)
Anterior Oral Cavity 5.8
Brainstem 2.6
Cord 1.9
Left Eye 1.5
Right Eye 1.5
Larynx 3.2
Left Optic Nerve 2.6
Right Optic Nerve 2.8
Left Parotid 2.6
Right Parotid 2.8
Prostate 3.7
Bladder 3.1
Rectum 3.6
Details are in the caption following the image

Comparison of interobserver variation and deformable image registration (DIR) error for head and neck regions of interest. Values represent the mean Hausdorff distance calculated between the two surfaces for all patients. Error bars represent 1 SD.

Details are in the caption following the image

Axial (a) and coronal (b) slices of left parotid contours for one patient. Axial (c) and sagittal (d) slices of bladder contours for one patient. Subscripts follow the definition in the text. Note the bladder has two deformed contours to represent the first and second pass of the deformable image registration algorithm.

B. Prostate

All three ROIs were contoured for all 20 patients. Table 4 shows means and standard deviations of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0172, and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0173 for three ROIs. Bladder and rectum have an additional comparison (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0174) for the additional pass of the DIR algorithm (seven and four patients, respectively). Table 3 shows the quadrature sum of urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0175 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0176 or urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0177 (if applicable) for potential margin expansion. The combined uncertainty for prostate yielded a narrower range than head and neck; bladder demonstrated combined uncertainty of 3.1 mm and rectum yielded 3.7 mm.

Figure 4 compares interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0178) and residual DIR errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0179 and urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0180). Error bars represent 1 SD. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0181 was significantly less than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0182 for rectum, was not significantly different than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0183 prostate, and was significantly more than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0184 bladder by 1.5 mm. A second iteration of DIR focused on the bladder or rectum decreased deformation errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0185) by 16.8% for bladder and 10.8% for rectum. urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0186, however, remained significantly greater than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0187 bladder and significantly less than urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0188 for rectum. Bladder contours for one patient are shown in Figs. 3(c) (axial) and 3(d) (coronal) for illustrative comparison.

Table 4. Total variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0189), intraobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0190), residual deformation errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0191 & urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0192), and interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0193) for male pelvic anatomy.
Total Variation Intraobserver Variation Residual Deformable Registration Errors Residual Deformable Registration Errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0194 pass) Interobserver Variation
Structure N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0195 N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0196 N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0197 N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0198 N urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0199
    Prostate 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0200 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0201 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0202 0 20 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0203
    Bladder 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0204 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0205 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0206 14@@2.6±1.9 20 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0207
    Rectum 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0208 10 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0209 40 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0210 8@@1.7±1.1 20 urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0211
  • N = represents the number of contours analyzed.
Details are in the caption following the image

Comparison of interobserver variation and deformable image registration (DIR) error for male pelvic regions of interest. Values represent the mean Hausdorff distance calculated between the two surfaces for all patients. Error bars represent 1 SD.

IV. DISCUSSION

The current work examines DIR errors (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0212) in contour propagation and interobserver variation (urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0213) in contour delineation for a sample of patients in two anatomical sites. The analysis was applied in two ways: first, to suggest a margin expansion for combined uncertainty of interobserver variation and DIR, and second, to directly compare interobserver variation and DIR uncertainty.

Numerous publications have suggested appropriate PTV and PRV margins for three-dimensional conformal and intensity-modulated radiation therapy, ranging from 2-5 mm for head and neck, depending on immobilization and frequency of image guidance24-32 and 3-10 mm for prostate depending on frequency of image guidance.33-35 Some authors have suggested the conventional 5 mm margin for head and neck is conservative and margin reduction may be possible,24, 25, 27, 29 but others have reported local setup uncertainties meet or exceed 5 mm.26, 28, 36

Our study indicates combined uncertainty of interobserver variation and DIR ranged from 1-6 mm for head and neck structures and between 3-4 mm for pelvic structures. Assuming that appropriate PRV margins can be conservatively extrapolated from PTV margin data, the combination of 2-3 mm reported setup uncertainty for head and neck, interobserver variation, and DIR error in quadrature would yield margins less than 5 mm for all but the anterior oral cavity, suggesting that conventional margins may be sufficient to cover the additional uncertainty of interobserver variation. This assumes, of course, the lower estimates for setup uncertainty, which may not be valid for anatomical subregions within the head and neck.26, 28, 36 For prostate, the quadrature sum including interobserver variation and DIR would only be covered by a 5 mm margin for the lower reported setup uncertainty of 3 mm. Rasch et al.,37 however, suggest that margins including delineation variability (with no consideration for DIR) should be between 7.9-9.7 mm for head and neck and 6.1-9.5 mm for prostate — substantially larger than our hypothetical margin which would include interobserver variation and DIR. The authors note, however, that this margin is an overestimation given the lack of increase in recurrences with increasingly conformal therapy.37 Gordon and Siebers38 suggest that calculated prostate PTV margins are conservative because dosimetric margins extend beyond the nominal PTV expansion.

In the head and neck region, DIR uncertainty was significantly less than interobserver variation for 4 of 10 ROIs, not significantly different for 4 of 10 ROIs, and significantly greater than interobserver variation for 2 of 10 ROIs. In the pelvic region, DIR uncertainty was significantly less than interobserver variation for 1 of 3 ROIs, not significantly different for 1 of 3 ROIs, and significantly greater than interobserver variation for 1 of 3 ROIs. The current work is similar to a recent study by Hoffmann et al.39 comparing DIR accuracy to interobserver variation for a sample of head and neck and abdominal patients using 30-50 landmark points delineated by five observers on planning and treatment CT images. The authors found interobserver variation in landmark definition to be urn:x-wiley:1526-9914:media:acm20347:acm20347-math-0214 and residual misalignment after B-spine DIR to be between 1-4 mm for 50% of landmarks. Although we compared surface separation between ROIs rather than points, our head and neck interobserver and DIR variability measurements compare favorably with the published results. Our analysis suggests that atlas-based segmentation using DIR may introduce normal tissue contour errors on par with interobserver variation for some anatomical structures, diminishing the advantage of observer-independent, atlas-based automatic segmentation. The increase in workflow efficiency, however, may be worthwhile given the net uncertainty remains relatively constant.

There are a few limitations to the current work. First, the current study only considers contour propagation. Surface analyses20 or overlap metrics40 provide limited information about deformation accuracy within a structure, so results of this study should not be generalized to other DIR applications, such as dose summation.41 Second, the study was limited to a single commercially available DIR algorithm, though the methodology employed should be transferrable to other DIR algorithms. Propagated contours are saved as DICOM data, and can be exported and analyzed with surface separation metrics in third-party commercial software or software developed in-house.42 Future work will include more observers for more robust interobserver analysis, and will focus on abnormal anatomy such as tumor and target volumes which are important for dose summation and adaptive radiation therapy. Mencarelli et al.43 found that B-spline DIR performs worse with tumor borders. Mohamed et al.15 compared deformed target volumes to manually segmented reference target volumes and found 95% Hausdorff distances between 5-10 mm.

V. CONCLUSIONS

Deformable image registration and interobserver variation influence contour propagation using a commercially available B-spine deformable image registration algorithm. Deformable image registration uncertainty was significantly less than, or not significantly different from, interobserver variation for most ROIs in the male pelvic and head and neck regions. Use of deformable image registration for atlas-based automatic segmentation may introduce uncertainty on par with interobserver variation. Combined interobserver variation and deformable image registration uncertainty may exceed conventional planning margins.

ACKNOWLEDGMENTS

The author (AR) would like to thank Eric Klein and David Collingridge for their help with this paper.

COPYRIGHT

This work is licensed under a Creative Commons Attribution 4.0 International License.