Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom
Richard Taschereau
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Electronic mail: [email protected]
Search for more papers by this authorPatrick L. Chow
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Search for more papers by this authorArion F. Chatziioannou
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Search for more papers by this authorRichard Taschereau
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Electronic mail: [email protected]
Search for more papers by this authorPatrick L. Chow
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Search for more papers by this authorArion F. Chatziioannou
The Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California School of Medicine, 700 Westwood Boulevard, Los Angeles, California 90095
Search for more papers by this authorAbstract
The purpose of this work was to calculate radiation dose and its organ distribution in a realistic mouse phantom from micro-computed tomography (microCT) imaging protocols. CT dose was calculated using GATE and a voxelized, realistic phantom. The x-ray photon energy spectra used in simulations were precalculated with GATE and validated against previously published data. The number of photons required per simulated experiments was determined by direct exposure measurements. Simulated experiments were performed for three types of beams and two types of mouse beds. Dose-volume histograms and dose percentiles were calculated for each organ. For a typical microCT screening examination with a reconstruction voxel size of , the average whole body dose varied from
(at
) to
(at
), showing a strong dependence on beam hardness. The average dose to the bone marrow is close to the soft tissue average. However, due to dose nonuniformity and higher radiation sensitivity, 5% of the marrow would receive an effective dose about four times higher than the average. If CT is performed longitudinally, a significant radiation dose can be given. The total absorbed radiation dose is a function of milliamperes-second, beam hardness, and desired image quality (resolution, noise and contrast). To reduce dose, it would be advisable to use the hardest beam possible while maintaining an acceptable contrast in the image.
REFERENCES
- 1N. M. De Clerck, K. Meurrens, H. Weiler, D. Van Dyck, G. Vanhoutte, P. Terpstra, and A. A. Postnov, “High-resolution x-ray microtomography for the detection of lung tumors in living mice,” Neoplasia 6, 374–379 (2004).
- 2M. Ding, A. Odgaard, and I. Hvid, “Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis,” J. Bone Jt. Surg., Br. Vol. Vol. 85B, 906–912 (2003).
- 3I. J. Hildebrandt and S. S. Gambhir, “Molecular imaging applications for immunology,” Clin. Immunol. 111, 210–224 (2004).
- 4N. M. Malyar, M. Gossl, P. E. Beighley, and E. L. Ritman, “Relationship between arterial diameter and perfused tissue volume in myocardial microcirculation: A microCT-based analysis,” Am. J. Physiol. Heart Circ. Physiol. 286, H2386–H2392 (2004).
- 5M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, “High resolution x-ray computed tomography: An emerging tool for small animal cancer research,” Neoplasia 10.1038/sj.neo.7900069 2, 62–70 (2000).
- 6E. L. Ritman, “Micro-computed tomography-current status and developments,” Annu. Rev. Biomed. Eng. 10.1146/annurev.bioeng.6.040803.140130 6, 185–208 (2004).
- 7C. Badea, L. W. Hedlund, and G. A. Johnson, “MicroCT with respiratory and cardiac gating,” Med. Phys. 10.1118/1.1812604 31, 3324–3329 (2004).
- 8F. Berger, Y. P. Lee, A. M. Loening, A. Chatziioannou, S. J. Freedland, R. Leahy, J. R. Lieberman, A. S. Belldegrun, C. L. Sawyers, and S. S. Gambhir, “Whole-body skeletal imaging in mice utilizing microPET: Optimization of reproducibility and applications in animal models of bone disease,” Eur. J. Nucl. Med. Mol. Imaging 29, 1225–1236 (2002).
- 9P. L. Chow, F. R. Rannou, and A. F. Chatziioannou, “Attenuation correction for small animal PET tomographs,” Phys. Med. Biol. 10.1088/0031-9155/50/8/014 50, 1837–1850 (2005).
- 10S. L. Chen, L. Cai, Q. Y. Meng, S. Xu, H. Wan, and S. Z. Liu, “Low-dose whole-body irradiation (LD-WBI) changes protein expression of mouse thymocytes: Effect of a LD-WBI-enhanced protein RIP10 on cell proliferation and spontaneous or radiation-induced thymocyte apoptosis,” Toxicol. Sci. 55, 97–106 (2000).
- 11W. Li, G. J. Wang, J. W. Cui, L. Xue, and L. Cai, “Low-dose radiation (LDR) induces hematopoietic hormesis: LDR-induced mobilization of hematopoietic progenitor cells into peripheral blood circulation,” Exp. Hematol. 32, 1088–1096 (2004).
- 12S. Z. Liu, “On radiation hormesis expressed in the immune system,” Crit. Rev. Toxicol. 33, 431–441 (2003).
- 13R. E. J. Mitchel, J. S. Jackson, D. P. Morrison, and S. M. Carlisle, “Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice,” Radiat. Res. 159, 320–327 (2003).
- 14K. M. Prise, M. Folkard, and B. D. Michael, “A review of the bystander effect and its implications for low-dose exposure,” Radiat. Prot. Dosimetry 104, 347–355 (2003).
- 15G. Schettino, M. Folkard, B. D. Michael, and K. M. Prise, “Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused C-K x rays,” Radiat. Res. 163, 332–336 (2005).
- 16G. Silasi, R. Diaz-Heijtz, J. Besplug, R. Rodriguez-Juarez, V. Titov, B. Kolb, and O. Kovalchuk, “Selective brain responses to acute and chronic low-dose x ray irradiation in males and females,” Biochem. Biophys. Res. Commun. 10.1016/j.bbrc.2004.10.166 325, 1223–1235 (2004).
- 17B. A. Ulsh, S. M. Miller, F. F. Mallory, R. E. J. Mitchel, D. P. Morrison, and D. R. Boreham, “Cytogenetic dose-response, and adaptive response in cells of ungulate species exposed to ionizing radiation,” J. Environ. Radioact. 74, 73–81 (2004).
- 18H. Wan, S. L. Gong, and S. Z. Liu, “Effects of low dose radiation on signal transduction of neurons in mouse hypothalamus,” Biomed. Environ. Sci. 14, 248–255 (2001).
- 19H. S. Yu, A. Q. Song, Y. D. Lu, W. S. Qui, and F. Z. Shen, “Effects of low-dose radiation on tumor growth, erythrocyte immune function and SOD activity in tumor-bearing mice,” Chin. J. Physiol. 117, 1036–1039 (2004).
- 20N. L. Ford, M. M. Thornton, and D. W. Holdsworth, “Fundamental image quality limits for microcomputed tomography in small animals,” Med. Phys. 10.1118/1.1617353 30, 2869–2877 (2003).
- 21Y. Liu, H. Liu, Y. Wang, and G. Wang, “Half-scan cone-beam CT fluoroscopy with multiple x-ray sources,” Med. Phys. 10.1118/1.1381549 28, 1466–1471 (2001).
- 22L. F. Yu and X. C. Pan, “Half-scan fan-beam computed tomography with improved noise and resolution properties,” Med. Phys. 10.1118/1.1607507 30, 2629–2637 (2003).
- 23T. Funk, M. S. Sun, and B. H. Hasegawa, “Radiation dose estimate in small animal SPECT and PET,” Med. Phys. 10.1118/1.1781553 31, 2680–2686 (2004).
- 24K. S. Kolbert, T. Watson, C. Matei, S. Xu, J. A. Koutcher, and G. Sgouros, “Murine S factors for liver, spleen, and kidney,” J. Nucl. Med. 44, 784–791 (2003).
- 25J. M. Boone, O. Velazquez, and S. R. Cherry, “Small-animal x ray dose from microCT,” Molecular Imaging 10.1162/1535350042380326 3, 149–158 (2004).
- 26S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J. M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, and C. Morel, “GATE: A simulation toolkit for PET and SPECT,” Phys. Med. Biol. 10.1088/0031-9155/49/19/007 49, 4543–4561 (2004).
- 27S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J. J. G. Cadenas, I. Gonzalez, G. G. Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F. W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. M. de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M. G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Seil, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. S. Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J. P. Wellisch, T. Wenaus, D. C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, “Geant4-a Simulation Toolkit,” Nucl. Instrum. Methods Phys. Res. A 10.1016/S0168-9002(03)01368-8 506, 250–303 (2003).
- 28W. P. Segars, B. M. W. Tsui, E. C. Frey, G. A. Johnson, and S. S. Berr, “Development of a 4-D digital mouse phantom for molecular imaging research,” Mol. Imaging Biol. 6, 149–159 (2004).
- 29“Photon, electron, proton, and neutron interaction data for body tissues,” ICRU Report 46, (International Commission on Radiation Units and Measurements, Bethesda, MD, 1992).
- 30T. R. Fewell, R. E. Shuping, K. R. Hawkins, United States. Bureau of Radiological Health, and United States. Bureau of Radiological Health. Division of Electronic Products., Handbook of Computed Tomography X-ray Spectra(U.S. Deptartment of Health and Human Services, Public Health Service, Food and Drug Administration, Bureau of Radiological Health, Rockville, MD, 1981), pp. vi–101.
- 31D. B. Stout, P. L. Chow, A. Gustilo, S. Grubwieser, and A. F. Chatziioannou, “Multimodality isolated bed system for mouse imaging experiments,” Mol. Imaging Biol. 5, 128–129 (2003).
- 32R. M. Samarth and A. Kumar, “Radioprotection of Swiss albino mice by plant extract Mentha piperita (Linn.),” J. Radiat. Res. (Tokyo) (Tokyo) 44, 101–109 (2003).
- 33 1990 Recommendations of the International Commission on Radiological Protection - Users’ Edition, 60, ICRP Publications (Pergamon Press, Oxford, New York, 1991), p. 215.
- 34P. L. Chow, F. R. Rannou, and A. F. Chatziioannou, “Towards a beam hardening correction for a microCT scanner,” Molecular Imaging 6, 77–78 (2004).
10.1016/j.mibio.2004.01.034 Google Scholar