Computer-aided diagnosis in high resolution CT of the lungs
Ingrid C. Sluimer
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorPaul F. van Waes
Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorMax A. Viergever
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorBram van Ginneken
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorIngrid C. Sluimer
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorPaul F. van Waes
Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorMax A. Viergever
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorBram van Ginneken
Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
Search for more papers by this authorAbstract
A computer-aided diagnosis (CAD) system is presented to automatically distinguish normal from abnormal tissue in high-resolution CT chest scans acquired during daily clinical practice. From high-resolution computed tomography scans of 116 patients, 657 regions of interest are extracted that are to be classified as displaying either normal or abnormal lung tissue. A principled texture analysis approach is used, extracting features to describe local image structure by means of a multi-scale filter bank. The use of various classifiers and feature subsets is compared and results are evaluated with ROC analysis. Performance of the system is shown to approach that of two expert radiologists in diagnosing the local regions of interest, with an area under the ROC curve of 0.862 for the CAD scheme versus 0.877 and 0.893 for the radiologists.
REFERENCES
- 1R. W. Webb, N. L. Müller, and D. P. Naidich, High-Resolution CT of the Lung (Lippincott, Williams & Wilkins, Philadelphia, 2001).
- 2K. S. Jhaveri, S. Saini, L. A. Levine, D. J. Piazzo, R. J. Doncaster, E. F. Halpern, P. F. Jordan, and J. H. Thrall, “Effect of multislice CT technology on scanner productivity,” Am. J. Roentgenol. 177, 769–772 (2001). 0092-5381
- 3A. P. Reeves and W. J. Kostis, “Computer-aided diagnosis for lung cancer,” Radiol. Clin. North Am. 38, 497–509 (2000).0033-8389
- 4S. G. Armato, M. L. Giger, and H. MacMahon, “Automated detection of lung nodules in CT scans: Preliminary results,” Med. Phys. 28, 1552–1561 (2001). 0094-2405
- 5Y. Lee, T. Hara, H. Fujita, S. Itoh, and T. Ishigaki, “Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique,” IEEE Trans. Med. Imaging 20, 595–604 (2001). 0278-0062
- 6M. F. McNitt-Gray, E. M. Har, N. Wyckoff, J. W. Sayre, J. G. Goldin, and D. R. Aberle, “A pattern classification approach to characterizing solitary pulmonary nodules imaged on high resolution CT: Preliminary results,” Med. Phys. 26, 880–888 (1999). 0094-2405
- 7D. F. Yankelevitz, A. P. Reeves, W. J. Kostis, B. Zhao, and C. I. Henschke, “Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation,” Radiology 217, 251–256 (2000). 0033-8419
- 8J. P. Ko and M. Betke, “Chest CT: Automated nodule detection and assessment of change over time-Preliminary experience,” Radiology 218, 267–273 (2001). 0033-8419
- 9H. Zagers, H. A. Vrooman, N. J. M. Aarts, J. Stolk, L. J. S. Kool, J. H. Dijkman, E. van Voorthuisen, and J. H. C. Reiber, “Assessment of the progression of emphysema by quantitative analysis of spirometrically gated computed tomography images,” Invest. Radiol. 31, 761–767 (1996). 0020-9996
- 10R. A. Blechschmidt, R. Werthschutzky, and U. Lorcher, “Automated CT image evaluation of the lung: A morphology-based concept,” IEEE Trans. Med. Imaging 20, 434–442 (2001). 0278-0062
- 11H. U. Kauczor, K. Heitmann, C. P. Heussel, D. Marwede, T. Uthmann, and M. Thelen, “Automatic detection and quantification of ground-glass opacities on high-resolution CT using multiple neural networks: Comparison with a density mask,” Am. J. Roentgenol. 175, 1329–1334 (2000). 0092-5381
- 12R. Uppaluri, E. A. Hoffman, M. Sonka, G. W. Hunninghake, and G. McLennan, “Interstitial lung disease—A quantitative study using the adaptive multiple feature method,” Am. J. Respir. Crit. Care Med. 159, 519–525 (1999).1073-449X
- 13R. Uppaluri, E. A. Hoffman, M. Sonka, P. G. Hartley, G. W. Hunninghake, and G. McLennan, “Computer recognition of regional lung disease patterns,” Am. J. Respir. Crit. Care Med. 160, 648–654 (1999).1073-449X
- 14S. Delorme, M. A. Keller-Reichenbecher, I. Zuna, W. Schlegel, and G. van Kaick, “Usual interstitial pneumonia—Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis,” Invest. Radiol. 32, 566–574 (1997). 0020-9996
- 15C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. M. Aisen, and L. S. Broderick, “ASSERT: A physician-in-the-loop content-based retrieval system for HRCT image databases,” Comput. Vis. Image Underst. 75, 111–132 (1999). 1077-3142
- 16J. G. Dy, C. E. Brodley, A. Kak, L. S. Broderick, and A. M. Aisen, “Unsupervised feature selection applied to content-based retrieval of lung images,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 379–384 (2003). 0162-8828
- 17R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (Wiley, New York, 2001).
- 18B. van Ginneken and B. M. ter Haar Romeny, “Multi-scale texture classification from generalized locally orderless images,” Pattern Recogn. 36, 899–911 (2003). 0031-3203
- 19R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3, 610–622 (1973).
10.1109/TSMC.1973.4309314 Google Scholar
- 20J. Malik, S. Belongie, T. Leung, and J. B. Shi, “Contour and texture analysis for image segmentation,” Int. J. Comput. Vis. 43, 7–27 (2001). 0920-5691
- 21A. K. Jain, R. P. W. Duin, and J. C. Mao, “Statistical pattern recognition: A review,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000). 0162-8828
- 22A. Jain and D. Zongker, “Feature selection: Evaluation, application, and small sample performance,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 153–158 (1997). 0162-8828
- 23J. Kittler, “Feature set search algorithms,” in Pattern Recognition and Signal Processing, edited by C. H. Chin (Alphen aan den Rijn, The Netherlands, 1978), pp. 41–60.
- 24N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (Cambridge University Press, Cambridge, 2000).
- 25S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” J. ACM 45, 891–923 (1998).1535-9921
- 26C. E. Metz, “ROC methodology in radiologic imaging,” Invest. Radiol. 21, 720–733 (1986). 0020-9996