Volume 48, Issue 4 p. 1921-1930
Research Article

Self-powered multilayer radioisotope identification device

Davide Brivio

Corresponding Author

Davide Brivio

Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Author to whom correspondence should be addressed. Electronic mail: [email protected].

Search for more papers by this author
Erno Sajo

Erno Sajo

University of Massachusetts Lowell, Lowell, MA, USA

Search for more papers by this author
Piotr Zygmanski

Piotr Zygmanski

Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

Search for more papers by this author
First published: 14 January 2021

Abstract

Purpose

This is a computational study to develop a rugged self-powered Radioisotope Identification Device (RIID). The principle of operation relies on the High Energy Current (HEC) concept (Zygmanski and Sajo, Med Phys. 43 4–15, 2016) with measurement of fast electron currents between low-Z and high-Z thin-film electrodes separated by nanoporous aerogel films in a multilayer detector structure whose prototypes were previously investigated (Brivio, Albert, Freund, Gagne, Sajo and Zygmanski, Med Phys, 46 4233–4240, 2019), (Brivio, Albert, Gagne, Freund, Sajo and Zygmanski, J Phys D Appl Phys, 53 265303, 2020). Here, we present an optimal detector design that accounts for a wide energy range (keV-MeV) of x-ray-emitting radioisotopes that are of interest to national security and radiation therapy.

Materials

We studied numerous multilayer detector geometries with N = 1..24 basic detector elements composed of 3 electrodes: N x (Al-aerogel-Ta-aerogel-Al). The thicknesses of electrodes and their total number were varied depending on the incident x-ray spectra and its ability to penetrate and interact with the different layers, producing fast electrons. We used radiation transport simulations to find a balanced geometry that accounts for all energies from 10 keV to 6 MeV in a single design with relatively few detector elements (N = 24). In the balanced design, the electrodes have increasing thickness as a function of depth in the detector, ranging from 0.5 μm-Ta and 10 μm-Al at the entrance to 10 mm-Ta and 2.5 mm-Al at the exit. Aerogel thickness was fixed at 50 μm. Electron currents forming RIID signals were acquired from all Ta electrodes. A model function M(x, Ei) representing the detector yield as a function of the cumulative Ta thickness (x) for 70 monoenergetic incident beams (E) was derived. We also investigated the detector response to selected radioactive isotopes (Pd-103, I-125, Pu-239, U-235, Ir-192, Cs-137, Co-60). Additional studies were performed with Bremsstrahlung spectra produced by electron beams in kVp tubes and in MV Linacs used in radiology and radiation therapy departments. We investigated different algorithms for radioisotope identification that would work for unknown unshielded as well as shielded sources.

Results

Characteristic features of response functions for monoenergetic beams and radioisotopes were determined and used to develop two inverse algorithms of radioisotope identification. Using these algorithms, we were able to identify the unshielded and shielded sources, quantify the minimum, mean and maximum effective energies of the shielded spectra, and estimate the amount of Compton background in the spectrum.

Conclusions

A multilayer sensor based on fast electron current was optimized and studied in its abilities as RIID. A balanced design permits the identification of radioisotopes with of a wide range of keV-MeV energies. The device is low cost, rugged, self-powered and can withstand very high dose rates, allowing deployment in difficult conditions, including radiation incidents. The algorithm we developed for radioisotope identification and spectral unfolding is robust and it is an important component in practical applications.

CONFLICT OF INTEREST

The authors have no conflicts to disclose.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author DB upon reasonable request.